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THE VELOCITY PATTERN IN INDENTATION BY A
STAMPING TOOL

A, E, Alekseev UDC 539.214;539.374

The planar deformation is considered when a hard smooth stamping tool enters an elastoplastic medium
bounded by a plane, In the limiting state, the tool with a flat base moves downwards with a speed v,

1. Continuous Solution for Velocities. Figure 1 shows the network of slip lines corresponding to Prager's
solution [3], which is a combination of the solutions due to Prandtl [1] and Hill [2].

In what follows we use not only a Cartesian coordinate system (x,y) but also a curvilinear system (p, 8),
where

z=1-4psin@®, y = —pcosb.
The width of the tool is taken as 2.

The length of the segment A,B( is 2A. Parameter A can take any value in the range 0 = A = 1 and de-
fines the dimensions of triangle A;B;C.

The following is the velocity pattern for the network of Prager slip lines (Fig. 1):

u=0, v= —U in tiangle A4,8,C,
u =1, v = —u, in triangle B\T\B,
u = vy/2, V= —1,/2 in rectangle CB,T,T,
u = V/2v, cos 8, v = V2W,sin®  insegment T,B,D,
u = (v,/V/2) cos 9, v = (,/V2)sin@ inregion TT,D.D,
u = vy, U=, in triangle BD,E,,

u = /2, v=1y/2 in region D,E.,ED,

where u and v are the components of the velocity vector along the x and y axes, respectively, The tangential
veloeity component is discontinuous along the lines CB;, CIDE, B,TDE,. In the limiting cases of A =1 and 0
we obtain the Prandtl and Hill solutions. Other possible velocity solutions have been considered in [4].
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In the solution considered below, the network of slip lines corresponds to Fig. 2 and coincides with the
network of Prandtl slip lines. The velocity pattern takes the form

(u=12, v=— vo(1+¥) iniangle ABC,
u=—uy,cos0(p—V2),

= —1,sin @ (p — V'2) inregion (DB,

V= —(vy/2){(x —y —3) intuiangle BDE,

{1.1)

v
u

Il

Here the velocity pattern of (1.1) is continuous everywhere in the yield region,
We checked the condition for positive power dissipation:

D = oue, + oyey -+ 1Y,

where oy, Oy, T are the components of the stress tensor and ey, ey, Y are the components of the strain-rate
tensor,

e, = Ouloz, ey = dv/dy, y= duidy - dv/dx.
The expression for D may be written as
D = 1,(—2e, sin 2& -+ y cos 28),

where ¢ is the inclination of the tangent to the line o (Fig. 2) reckoned in the positive direction from the x
axis, In triangle ABC we have ¢ =—n/4, while £ = ¢ in region CBD and ¢ = /4 in triangle BDE, The expres-
sions for the velocities give us that the components of the strain-rate tensor are

ey = —eg =1, y=0 . intriangle  4BC,
ey = —ey = —U, sin 28/1/2p, y = 2v, cos 206//2p inregion CBD,
e, = —ey = 1y/2, y =10 in triangle BDE.

The corresponding values of the dissipation power are as follows: in region ABC 274V, in region BCD V2rgv,/
p, and in region BDE tgv; consequently, the condition for positive dissipation power is obeyed everywhere in
the plastic region,

2. Continuous Velocity Pattern as the Limit of a Sequence of Discontinuous Solutions, We consider a
segment of unit length OB (Fig. 1) which is divided into n equal parts and put A; =i/n, 0 = i < n; then accord-
ing to the above for each A; there is a discontinuous velocity pattern (u?,v?) corresponding to the Prager solution
for A = Aj (Fig. 1). We consider the velocity pattern (u®, v%), which is a combination of the solutions (u;‘, v{l)
and takes the form

3

n

i n 1 n

U = Uiy L“":——Evi.
H‘"gd s

The velocity patterns (u?, v?) by construction are solutions to the problem,. It can be shown that in this case
the velocities (u®, v?) are also solutions.

We denote by (ux, vy) the continuous velocity field defined by (1.1); we now show that in the metric of the
space of L, functions that are summable in square the velocity field (ux, vs) is the limit of the sequence {u”,
v}, Le.,

lim { (u, —wPd@ =0, lim | (v, —ompd@ - 0.
8 -0

o
1n~00 ¢ Q



We prove the first equality, while the proof for the second is analogous. We have

n n no,
1 — yn)2 — |3 2 . 2 n ; 1 non
,}i’iti(“* uny? dQ th W — = ggu*uldg o > jum,dQ). @.1)

n~>o00 'i,j;() B

We use the form of the functions u? and u, and also standard formulas from the theory of series to get after
integration that

2.5 o1 1 niy . o+n 1
S UdQ = == Ty 4 ) W2 = g W8n
Q

M:

Il
[~

0 1

(2.2)

n
1 \ \“ an 541 4-i-m—2n
—_— ubuldQ = _
(L4 n)* i,,-zr‘o o 12 48u(T+ n)

We substitute (2.2) into (2.1) to get

w2 gQ . — 0T
i(”*—”) dQ = 2w

where the right side tends to zero for n — =, It has thereby been shown that the continuous solution for the
velocities of (1.1) is the limit to the sequence of discontinuous solutions.
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CHANGE IN THE FILTRATION PARAMETERS OF A
SATURATED COLLECTOR DUE TO A CONFINED EXPLOSION

A. N, Bovt, K. S. Konenkov, UDC 622.235
V. I. Musinov, V. N. Nikolaevskii,
and E, A, Shurygin

1. It has now been quite definitely established that the permeability of a monolithic rock of granite type
increases by up to 4-5 orders of magnitude after a contained explosion by comparison with the initial perme-
ability, which is extremely small (0.01 mD). The permeability of coal after an explosion increases more
moderately (by 2 orders), while the initial permeability is of the order of 100 mD [1, 3]. In both cases there
is a monotone fall in the permeability to the peripheral initial value away from the explosion cavity. In these
media the improvement in the permeability is due to the explosive generation of radial and other crack sys~
tems.

On the other hand, a contained explosion in an air-dry porous highly permeable medium leads [4] to a
substantial fall in the permeability everywhere around the explosion cavity, in spite of the dilatation. There
is marked improvement in the hydraulic permeability due only to passage of individual joints near the ex-
plosion cavity. Therefore, the irreversible changes in permeability produced in porous rocks by explosion
are due to competing mechanisms of fracturing and pore consolidation, The parameters of the irreversible
rock deformation corresponding to appreciable permeability change are the damage [3] (i.e., the jointing) and
the extremely small residual strain (0,01%).
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