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THE VELOCITY PATTERN IN INDENTATION BY A 

STAMPING TOOL 

A. E .  A l e k s e e v  UDC 539.214;539.374 

The planar deformation is considered when a hard smooth stamping tool enters an elastoplastie medium 
bounded by a plane. In the limiting state, the tool with a flat base moves downwards with a speed v 0. 

I. Continuous Solution for Velocities. Figure 1 shows the network of slip lines corresponding to Prager's 
solution [3], which is a combination of the solutions due to Prandtl [I] and Hill [2]. 

In what follows we use not only a Cartesian coordinate system (x, y) but also a curvilinear system (p, 0), 
where 

x = i  +psin0,; g=--pcosO. 

The width of the tool is taken as 2. 

The length of the segment  A1B 1 is 2X. P a r a m e t e r  X can take any value in the range 0 -< X ~< 1 and de- 
fines the dimensions of tr iangle A1B1C. 

The following is the velocity pattern for the network of P rage r  slip lines (Fig. 1): 

U ~ 0 t U ~ - - U  0 

u = Vo/2, v = --Vo/2 

u = -I/2vo cos O, v = -]/2"vo sin 0 

u = (vo/-I/:2) cos O, v = ( v o / V ~  sin 0 

U =  YO, U~ Y~) 

u = Up~2, v =  Vo/2 

m triangle A1B1C~, 

"m triangle B I T i B  , 

in rectangle C B i  T x T  ' 

�9 in segment T 1 B I D ,  ' 

in region TT1DaD ~ 

m triangle B D 1 E I ,  

in region D1E1ED,,  

where u and v are the components of the velocity vector along the x and y axes, respectively. The tangential 
velocity component is discontinuous along the lines CBI, CTDE, BITIDIE i. In the limiting cases of X = 1 and 0 
we obtain the Prandtl and Hill solutions. Other possible velocity solutions have been considered in [4]. 
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In the solution considered below, the network of slip lines corresponds to Fig. 2 and coincides with the 
network of Prandtl slip lines. The velocity pattern takes the form 

i l  = P0X' V = - -  V O (l -~- y) in triangle A B C ,  

u = - -  v o c o s  0 (p  - -  V - 2 ) ,  ( 1 . 1 )  

--  - -  v o sin 0 (p - -  V 2 )  in region C D B ,  

= v = - -  (Vo/2) (x - -  y - -  3) in triangle B D E .  

H e r e  the  v e l o c i t y  p a t t e r n  of (1.1) is  con t inuous  e v e r y w h e r e  in the  y i e l d  r e g i o n .  

We c h e c k e d  the  cond i t ion  fo r  p o s i t i v e  power  d i s s i p a t i o n :  

D =o=e= + % %  + ~ 7 ,  

w h e r e  Crx, O-y, r a r e  the c o m p o n e n t s  of the  s t r e s s  t e n s o r  and ex ,  ey ,  7 a r e  the  c o m p o n e n t s  of the  s t r a i n - r a t e  
t e n s o r ,  

e x = Ou/Ox, ey = Ov/Oy, 7 =  Ou/Oy + Or~Oz. 

The expression for D may be written as 

D = ~( - -2e  x sin 2~ + 7 cos 2~), 

where ~ is the inclination of the tangent to the line a (Fig. 2) reckoned in the positive direction from the x 
axis. In triangle ABC we have ~ =-,v/4, while ~ = 0 in region CBD and ~ = u/4 in triangle BDE. The expres- 
sions for the velocities give us that the components of the strain-rate tensor are 

e x = - - e y  = Vo, 7 = 0 in triangle A B C ,  

e= = --e~ = --Vo sin 20/]/2p, 7 = 2Vo cos 20 / V '2p  in region C B D ,  
e x = - - e  v ---- uo/2, 7 ---- 0 in triangle B D E .  

The c o r r e s p o n d i n g  va lue s  of the  d i s s i p a t i o n  power  a r e  as fo l lows :  in r e g i o n  ABC 2rsV0, in r e g i o n  BCD ~f2rsV0/ 
p, and in r e g i o n  BDE rsV0; c o n s e q u e n t l y ,  the  cond i t ion  fo r  p o s i t i v e  d i s s i p a t i o n  power  is  obeyed  e v e r y w h e r e  in 
the  p l a s t i c  r e g i o n .  

2. Cont inuous  Ve loc i ty  P a t t e r n  as the L i m i t  of a Sequence  of D i scon t inuous  So lu t ions .  We c o n s i d e r  a 
segment of unit length OB (Fig. 1) which is divided into n equal parts and put h i = i/n, 0 -< i -< n; then accord- 
ing to the above for each h i there is a discontinuous velocity pattern (up, vp) corresponding to the Prager solution 
for h = k i (Fig. 1). We consider the velocity pattern (u n, vn), which is a combination of the solutions (u n, vp) 

and takes the form 
n 

u n  = 1 n ~.n = 

t+7, u~ i + h z ~  ~ "  
{ = 0  ~=0  

The v e l o c i t y  p a t t e r n s  (u n, v n) by c o n s t r u c t i o n  a r e  so lu t i ons  to the  p r o b l e m .  It can  be shown tha t  in th is  c a s e  
the  v e l o c i t i e s  (u n, v n) a r e  a l so  s o l u t i o n s .  

We denote  by (u , ,  v , )  the cont inuous  v e l o c i t y  f i e ld  def ined  by (1.1); we now show tha t  in the  m e t r i c  of the  
s p a c e  of L 2 funct ions  tha t  a r e  s u m m a b l e  in s q u a r e  the  v e l o c i t y  f i e ld  (u , ,  v , )  is  the  l i m i t  of the  s e q u e n c e  {u n, 
vn},  i.e., 

7!8 



We prove the f i rs t  equality, while the proof for the second is analogous. We have 

2 ~2 n t u'~u~jd9.. (2.1) lira (u,--u'~) ~dQ.- lim u~,dO.  ( l+n)  ~ u ,u~d~  + ( t+n)  ~ o 

We use the form o~ the functions u n and u. and also standard formulas from the theory of series to get after 

integration that 

n 

h 12 '~ (l-+-n~, i=o5 " t2 

n 
t ~ i ~ n n.r)  5 + ~  4 . - ~ - - 2 n  

} uiuja~. = t2 48n(t + n) ' ( t+  n) ~ ij=oh 

48n " 
(2.2) 

We substitute (2.2) into (2.1) to get 

l 6 + ~  
. (u , - -un)  ~d~ -. 48n(1+,~)' 
.q 

where the right side tends to zero for n -- ~. It has thereby been shown that the continuous solution for the 

velocities of (I.!) is the limit to the sequence of discontinuous solutions. 

1o 

2. 

3. 

4. 
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C H A N G E  IN T H E  F I L T R A T I O N  P A R A M E T E R S  O F  A 

S A T U R A T E D  C O L L E C T O R  D U E  TO A C O N F I N E D  E X P L O S I O N  

A. N. B o v t ,  K. S. K o n e n k o v ,  
V. I .  M u s i n o v ,  V. N. N i k o l a e v s k i i ,  
a n d  E .  A. S h u r y g i n  

UDC 622.235 

1. It has now been quite definitely established that the permeability of a monolithic rock of granite type 

increases by up to 4-5 orders of magnitude after a contained explosion by comparison with the initial perme- 

ability, which is extremely small (0.01 roD). The permeability of coal after an explosion increases more 

moderately (by 2 orders), while the initial permeability is of the order of I00 mD [I, 3]. In both cases there 

is a monotone fall in the permeability to the peripheral initial value away from the explosion cavity. In these 
media the improvement in the permeability is due to the explosive generation of radial and other crack sys- 
tems. 

On the other hand, a contained explosion in an air-dry porous highly permeable medium leads [4] to a 
substantial fall in the permeability everywhere around the explosion cavity, in spite of the dilatation. There 
is marked improvement in the hydraulic permeability due only to passage of individual joints near the ex- 
plosion cavity. Therefore, the irreversible changes in permeability produced in porous rocks by explosion 
are due to competing mechanisms of fracturing and pore consolidation. The parameters of the irreversible 
rock deformation corresponding to appreciable permeability change are the damage [3] (i.e., the jointing) and 
the extremely small residual strain (0.01'%). 
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